Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Pharmaceutics ; 16(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543318

RESUMO

Fluorescent bioprobes are invaluable tools for visualizing live cells and deciphering complex biological processes by targeting intracellular biomarkers without disrupting cellular functions. In addition to protein-binding concepts, fluorescent probes utilize various mechanisms, including membrane, metabolism, and gating-oriented strategies. This study introduces a novel fluorescent mechanism distinct from existing ways. Here, we developed a B cell selective probe, CDrB, with unique transport mechanisms. Through SLC-CRISPRa screening, we identified two transporters, SLCO1B3 and SLC25A41, by sorting out populations exhibiting higher and lower fluorescence intensities, respectively, demonstrating contrasting activities. We confirmed that SLCO1B3, with comparable expression levels in T and B cells, facilitates the transport of CDrB into cells, while SLC25A41, overexpressed in T lymphocytes, actively exports CDrB. This observation suggests that SLC25A41 plays a crucial role in discriminating between T and B lymphocytes. Furthermore, it reveals the potential for the reversible localization of SLC25A41 to demonstrate its distinct activity. This study is the first report to unveil a novel strategy of SLC by exporting the probe. We anticipate that this research will open up new avenues for developing fluorescent probes.

2.
Methods Mol Biol ; 2779: 305-321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526792

RESUMO

The development of small-molecule fluorescent probes for specific immune cell identification offers an economical alternative to expensive antibodies. Moreover, it enables the identification of live target cells and provides insights into the distinct properties of cells, leveraging their specific staining mechanisms. This chapter presents a comprehensive elucidation of the methodology employed for screening fluorescent compounds using flow cytometry measurements. A novel analytical approach is proposed to distinguish a fluorescent compound with a specific carbon length for B lymphocytes, involving an assessment of the staining index and the predominant ratio of immune cells. Moreover, a protocol is presented for investigating the staining mechanisms of these probes by employing cell mimicking models such as small unilamellar vesicles (SUVs).


Assuntos
Corantes Fluorescentes , Citometria de Fluxo/métodos
3.
Aesthet Surg J ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330289

RESUMO

BACKGROUND: Implant-based breast reconstruction is associated with increased risk of early infection and late-stage capsular contracture. OBJECTIVES: We evaluated the feasibility of a dual drug-releasing patch that enabled the controlled delivery of antibiotics and immunosuppressants in a temporally and spatially appropriate manner to the implant site. METHODS: The efficacy of a dual drug-releasing patch, which was 3D-printed using tissue-derived biomaterial ink, was evaluated in rats with silicone implants. The groups included implant only (n = 10); implant plus bacterial inoculation (n = 14); implant, bacterial inoculation, and patch loaded with gentamycin placed on the ventral side of the implant (n = 10), and implant, bacterial inoculation, and patch loaded with gentamycin and triamcinolone acetonide (n = 9). Histologic and immunohistochemical analyses were 8 weeks after implantation. RESULTS: The two drugs were sequentially released from the dual drug-releasing patch and exhibited different release profiles. Compared to the animals with bacterial inoculation, those with the antibiotic-only and the dual drug-releasing patch exhibited thinner capsules, lower myofibroblast activity and inflammation, indicating better tissue integration and less foreign body response. These effects were more pronounced with the dual drug-releasing patch than with the antibiotic-only patch. CONCLUSIONS: The 3D-printed dual drug-releasing patch effectively reduced inflammation and capsule formation in a rat model of silicone breast reconstruction. The beneficial effect of the dual drug-releasing patch was better than that of the antibiotic-only patch, indicating its therapeutic potential as a novel approach to prevent capsular contracture while reducing concerns of systemic side effects.

4.
Angew Chem Int Ed Engl ; 63(3): e202312942, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38062619

RESUMO

The development of a small-molecule probe designed to selectively target neurons would enhance the exploration of intricate neuronal structures and functions. Among such probes, NeuO stands out as the pioneer and has gained significant traction in the field of research. Nevertheless, neither the mechanism behind neuron-selectivity nor the cellular localization has been determined. Here, we introduce NeuM, a derivative of NeuO, designed to target neuronal cell membranes. Furthermore, we elucidate the mechanism behind the selective neuronal membrane trafficking that distinguishes neurons. In an aqueous buffer, NeuM autonomously assembles into micellar structures, leading to the quenching of its fluorescence (Φ=0.001). Upon exposure to neurons, NeuM micelles were selectively internalized into neuronal endosomes via clathrin-mediated endocytosis. Through the endocytic recycling pathway, NeuM micelles integrate into neuronal membrane, dispersing fluorescent NeuM molecules in the membrane (Φ=0.61). Molecular dynamics simulations demonstrated that NeuM, in comparison to NeuO, possesses optimal lipophilicity and molecular length, facilitating its stable incorporation into phospholipid layers. The stable integration of NeuM within neuronal membrane allows the prolonged monitoring of neurons, as well as the visualization of intricate neuronal structures.


Assuntos
Clatrina , Micelas , Clatrina/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Neurônios/metabolismo
5.
Nat Chem Biol ; 20(3): 291-301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37770698

RESUMO

Diverse mechanisms have been described for selective enrichment of biomolecules in membrane-bound organelles, but less is known about mechanisms by which molecules are selectively incorporated into biomolecular assemblies such as condensates that lack surrounding membranes. The chemical environments within condensates may differ from those outside these bodies, and if these differed among various types of condensate, then the different solvation environments would provide a mechanism for selective distribution among these intracellular bodies. Here we use small molecule probes to show that different condensates have distinct chemical solvating properties and that selective partitioning of probes in condensates can be predicted with deep learning approaches. Our results demonstrate that different condensates harbor distinct chemical environments that influence the distribution of molecules, show that clues to condensate chemical grammar can be ascertained by machine learning and suggest approaches to facilitate development of small molecule therapeutics with optimal subcellular distribution and therapeutic benefit.


Assuntos
Condensados Biomoleculares , Aprendizado de Máquina
6.
Chem Commun (Camb) ; 60(5): 501-521, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095135

RESUMO

Functional fluorophores represent an emerging research field, distinguished by their diverse applications, especially in sensing and cellular imaging. After the discovery of quinine sulfate and subsequent elucidation of the fluorescence mechanism by Sir George Stokes, research in the field of fluorescence gained momentum. Over the past few decades, advancements in sophisticated instruments, including super-resolution microscopy, have further promoted cellular imaging using traditional fluorophores. These advancements include deciphering sensing mechanisms via photochemical reactions and scrutinizing the applications of fluorescent probes that specifically target organelles. This approach elucidates molecular interactions with biomolecules. Despite the abundance of literature illustrating different classes of probe development, a concise summary of newly developed fluorophores remains inadequate. In this review, we systematically summarize the chronological discovery of traditional fluorophores along with new fluorophores. We briefly discuss traditional fluorophores ranging from visible to near-infrared (NIR) in the context of cellular imaging and in vivo imaging. Furthermore, we explore ten new core fluorophores developed between 2007 and 2022, which exhibit advanced optical properties, providing new insights into bioimaging. We illustrate the utilization of new fluorophores in cellular imaging of biomolecules, such as reactive oxygen species (ROS), reactive nitrogen species (RNS), and proteins and microenvironments, especially pH and viscosity. Few of the fluorescent probes provided new insights into disease progression. Furthermore, we speculate on the potential prospects and significant challenges of existing fluorophores and their potential biomedical research applications. By addressing these aspects, we intend to illuminate the compelling advancements in fluorescent probe development and their potential influence across various fields.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Corantes Fluorescentes/química , Imagem Óptica/métodos , Organelas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Elife ; 122023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079477

RESUMO

Based on studies with a fluorescent reporter dye, Mito Thermo Yellow (MTY), and the genetically encoded gTEMP ratiometric fluorescent temperature indicator targeted to mitochondria, the temperature of active mitochondria in four mammalian and one insect cell line was estimated to be up to 15°C above that of the external environment to which the cells were exposed. High mitochondrial temperature was maintained in the face of a variety of metabolic stresses, including substrate starvation or modification, decreased ATP demand due to inhibition of cytosolic protein synthesis, inhibition of the mitochondrial adenine nucleotide transporter and, if an auxiliary pathway for electron transfer was available via the alternative oxidase, even respiratory poisons acting downstream of oxidative phosphorylation (OXPHOS) complex I. We propose that the high temperature of active mitochondria is an inescapable consequence of the biochemistry of OXPHOS and is homeostatically maintained as a primary feature of mitochondrial metabolism.


Assuntos
Respiração Celular , Mitocôndrias , Animais , Temperatura , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Regulação da Temperatura Corporal , Estresse Fisiológico , Mamíferos
9.
ACS Med Chem Lett ; 14(9): 1208-1215, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37736195

RESUMO

Liver cancer is one of the leading causes of cancer-related deaths, with a significant increase in incidence worldwide. Novel therapies are needed to address this unmet clinical need. Indocyanine green (ICG) is a broadly used fluorescence-guided surgery (FGS) agent for liver tumor resection and has significant potential for conversion to a targeted therapy. Here, we report the design, synthesis, and investigation of a series of iodinated ICG analogs (I-ICG), which can be used to develop ICG-based targeted radiopharmaceutical therapy. We applied a CRISPR-based screen to identify the solute carrier transporter, OATP1B3, as a likely mechanism for ICG uptake. Our lead I-ICG compound specifically localizes to tumors in mice bearing liver cancer xenografts. This study introduces the chemistry needed to incorporate iodine onto the ICG scaffold and defines the impact of these modifications on key properties, including targeting liver cancer in vitro and in vivo.

10.
J Immunol ; 211(9): 1348-1358, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37737664

RESUMO

Cytotoxic lymphocytes eliminate cancer cells through the release of lytic granules, a specialized form of secretory lysosomes. This compartment is part of the pleomorphic endolysosomal system and is distinguished by its highly dynamic Ca2+ signaling machinery. Several transient receptor potential (TRP) calcium channels play essential roles in endolysosomal Ca2+ signaling and ensure the proper function of these organelles. In this study, we examined the role of TRPML1 (TRP cation channel, mucolipin subfamily, member 1) in regulating the homeostasis of secretory lysosomes and their cross-talk with mitochondria in human NK cells. We found that genetic deletion of TRPML1, which localizes to lysosomes in NK cells, led to mitochondrial fragmentation with evidence of collapsed mitochondrial cristae. Consequently, TRPML1-/- NK92 (NK92ML1-/-) displayed loss of mitochondrial membrane potential, increased reactive oxygen species stress, reduced ATP production, and compromised respiratory capacity. Using sensitive organelle-specific probes, we observed that mitochondria in NK92ML1-/- cells exhibited evidence of Ca2+ overload. Moreover, pharmacological activation of the TRPML1 channel in primary NK cells resulted in upregulation of LC3-II, whereas genetic deletion impeded autophagic flux and increased accumulation of dysfunctional mitochondria. Thus, TRPML1 impacts autophagy and clearance of damaged mitochondria. Taken together, these results suggest that an intimate interorganelle communication in NK cells is orchestrated by the lysosomal Ca2+ channel TRPML1.


Assuntos
Canais de Cálcio , Canais de Potencial de Receptor Transitório , Humanos , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Mitocôndrias/metabolismo , Lisossomos/metabolismo , Células Matadoras Naturais/metabolismo
11.
Mol Ther Nucleic Acids ; 33: 642-654, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37650117

RESUMO

Loss of elastin due to aging, disease, or injury can lead to impaired tissue function. In this study, de novo tropoelastin (TE) synthesis is investigated in vitro and in vivo using different TE-encoding synthetic mRNA variants after codon optimization and nucleotide modification. Codon optimization shows a strong effect on protein synthesis without affecting cell viability in vitro, whereas nucleotide modifications strongly modulate translation and reduce cell toxicity. Selected TE mRNA variants (3, 10, and 30 µg) are then analyzed in vivo in porcine skin after intradermal application. Administration of 30 µg of native TE mRNA with a me1 Ψ modification or 10 and 30 µg of unmodified codon-optimized TE mRNA is required to increase TE protein expression in vivo. In contrast, just 3 µg of a codon-optimized TE mRNA variant with the me1 Ψ modification is able to increase protein expression. Furthermore, skin toxicity is investigated in vitro by injecting 30 µg of mRNA of selected TE mRNA variants into a human full-thickness skin model, and no toxic effects are observed. Thereby, for the first time, an increased dermal TE synthesis by exogenous administration of synthetic mRNA is demonstrated in vivo. Codon optimization of a synthetic mRNA can significantly increase protein expression and therapeutic outcome.

12.
Life Sci ; 331: 122032, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604353

RESUMO

Menthol is a small bioactive compound able to cause several physiological changes and has multiple molecular targets. Therefore, cellular response against menthol is complex, and still poorly understood. In this work, we used a human osteosarcoma cell line (Saos-2) and analysed the effect of menthol, especially in terms of cellular, subcellular and molecular aspects. We demonstrate that menthol causes increased mitochondrial Ca2+ in a complex manner, which is mainly contributed by intracellular sources, including ER. Menthol also changes the Ca2+-load of individual mitochondrial particles in different conditions. Menthol increases ER-mito contact points, causes mitochondrial morphological changes, and increases mitochondrial ATP, cardiolipin, mitochondrial ROS and reduces mitochondrial membrane potential (ΔΨm). Menthol also prevents the mitochondrial quality damaged by sub-lethal and lethal doses of CCCP. In addition, menthol lowers the mitochondrial temperature within cell and also serves as a cooling agent for the isolated mitochondria in a cell free system too. Notably, menthol-induced reduction of mitochondrial temperature is observed in diverse types of cells, including neuronal, immune and cancer cells. As the higher mitochondrial temperature is a hallmark of several inflammatory, metabolic, disease and age-related disorders, we propose that menthol can serve as an active anti-aging compound against all these disorders. These findings may have relevance in case of several pharmacological and clinical applications of menthol. SIGNIFICANCE STATEMENT: Menthol is a plant-derived bioactive compound that is widely used for several physiological, behavioural, addictive, and medicinal purposes. It is a well-established "cooling and analgesic agent". However, the exact cellular and sub-cellular responses of menthol is poorly understood. In this work, we have characterized the effects of menthol on mitochondrial metabolism. Menthol regulates mitochondrial Ca2+, ATP, superoxides, cardiolipin, membrane-potential, and ER-mito contact sites. Moreover, the cooling agent menthol also cools down mitochondria and protects mitochondrial damage by certain toxins. These findings may promote use of menthol as a useful supplementary agent for anti-aging, anti-cancer, anti-inflammatory purposes where higher mitochondrial temperature is prevalent.


Assuntos
Cardiolipinas , Mentol , Humanos , Mentol/farmacologia , Mentol/metabolismo , Cardiolipinas/metabolismo , Mitocôndrias/metabolismo , Relação Estrutura-Atividade , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo
13.
Chem Commun (Camb) ; 59(61): 9372-9375, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37432659

RESUMO

The fluorescent probe pair, NBD-B2 and Styryl-51F, selectively detects NMN over citric acid. NBD-B2 exhibits increased fluorescence, while Styryl-51F shows decreased fluorescence upon NMN addition. Their ratiometric fluorescence change enables highly sensitive and wide-range detection of NMN, effectively distinguishing it not only from citric acid but also other NAD boosters.

14.
Tomography ; 9(4): 1187-1195, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37489464

RESUMO

The development of efficient biomarkers and probes for monitoring and treating cancer, specifically metastatic cancer, is a critical research area that can have a significant impact on both patient outcomes and drug discovery. In this context, TiNIR has been developed to detect tumor-initiating cells (TICs), with heme oxygenase 2 (HO2) as a promising therapeutic biomarker for tumor-initiating cells. In this study, TiNIR has demonstrated its effectiveness as an in vivo metastatic lung cancer tracker, highlighting its potential as a valuable tool in cancer research and therapy. The development of innovative approaches that selectively target metastatic cancers represents a promising avenue for improving survival rates and enhancing the quality of life of cancer patients.


Assuntos
Neoplasias Pulmonares , Qualidade de Vida , Humanos
15.
ACS Nano ; 17(16): 15857-15870, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37477428

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely employed in biomedical fields, including targeted delivery of antitumor therapy. Conventional magnetic tumor targeting has used simple static magnetic fields (SMFs), which cause SPIONs to linearly aggregate into a long chain-like shape. Such agglomeration greatly hinders the intracellular targeting of SPIONs into tumors, thus reducing the therapeutic efficacy. In this study, we investigated the enhancement of the intracellular uptake of SPIONs through the application of rotating magnetic fields (RMFs). Based on the physical principles of SPION chain disassembly, we investigated physical parameters to predict the chain length favorable for intracellular uptake. Our prediction was validated by clear visualization of the intracellular distributions of SPIONs in tumor cells at both cellular and three-dimensional microtissue levels. To identify the potential therapeutic effects of enhanced intracellular uptake, magnetic hyperthermia as antitumor therapy was investigated under varying conditions of magnetic hyperthermia and RMFs. The results showed that enhanced intracellular uptake reduced magnetic hyperthermia time and strength as well as particle concentration. The proposed method will be useful in the development of techniques to determine the optimized physical conditions for the enhanced intracellular uptake of SPIONs in antitumor therapy.


Assuntos
Nanopartículas de Magnetita , Neoplasias , Humanos , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas Magnéticas de Óxido de Ferro , Neoplasias/tratamento farmacológico
16.
Theranostics ; 13(4): 1370-1380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923526

RESUMO

Background: Tumor-initiating cells (TIC) often elude conventional cancer treatment, which results in metastasis and cancer relapse. Recently, studies have begun to focus on the TIC population in tumors to provide better therapeutic options. Previously, we have reported the successful development of a TIC-specific probe TiY with the binding target as vimentin. While a low concentration of TiY showed a TIC visualization, at a high concentration, TiY induced selective toxicity onto TIC in vitro. In this study, we aim to assess TiY's applicability in theranostics purposes, from in vivo visualization to therapeutic effect toward TIC, in cancer mouse models. Methods: We performed cell experiments with the TIC line model derived from resected primary non-small cell lung cancer (NSCLC) patient tumor. The animal model studies were conducted in mice of NSCLC patient-derived xenograft (PDX). TiY was intravenously delivered into the mice models at different concentrations to assess its in vivo TIC-selective staining and therapeutic effect. Results: We demonstrated the TIC-selective identification and therapeutic effect of TiY in animal models. TiY treatment induced a significant ablation of the TIC population in the tumor, and further molecular study elucidated that the mechanism of TiY is through vimentin dynamics in TIC. Conclusion: The results underscore the applicability of TiY for cancer treatment by selectively targeting soluble vimentin in TIC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Vimentina/metabolismo , Medicina de Precisão , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Células-Tronco Neoplásicas/metabolismo
17.
Anal Chem ; 95(8): 4147-4154, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36800528

RESUMO

The differentiation of the distinct phenotypes of macrophages is essential for monitoring the stage of inflammatory diseases for accurate diagnosis and treatment. Recent studies revealed that the level of hypochlorite (OCl-) varies from activated M1 macrophages (killing pathogens) to M2 (resolution of inflammation) during inflammation. Thus, we developed a simple and efficient fluorescent probe for discriminating M1 from M0 and M2. Herein, fluorescent-based imaging is applied as an alternative to immunohistochemistry, which is challenging due to the tedious process and high cost. We developed a hypochlorite-specific probe PMS-T to differentiate M1 and M2, employing a metabolism-oriented live-cell distinction. This probe enables the detection of inflammatory rheumatoid arthritis in an ex vivo mouse model. Thus, it can be a potential chemical tool for monitoring inflammatory diseases, including rheumatoid arthritis, that may overcome the existing barriers of immunohistochemistry.


Assuntos
Artrite Reumatoide , Corantes Fluorescentes , Animais , Camundongos , Ácido Hipocloroso , Elétrons , Artrite Reumatoide/diagnóstico por imagem , Inflamação/diagnóstico por imagem
18.
Life Sci ; 318: 121493, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764606

RESUMO

T cell activation process is critically affected by temperature and intracellular Ca2+-signalling. Yet, the nature and the key molecules involved in such complex Ca2+-signalling is poorly understood. It is mostly assumed that ion channels present in the plasma membrane primarily regulate the cytosolic Ca2+-levels exclusively. TRPV4 is a non-selective Ca2+ channel which can be activated at physiological temperature. TRPV4 is involved in several physiological, pathophysiological process as well as different forms of pain. Here we demonstrate that TRPV4 is endogenously expressed in T cell and is present in the mitochondria of T cells. TRPV4 activation increases mitochondrial Ca2+-levels, and alters mitochondrial temperature as well as specific metabolisms. The TRPV4-dependent increment in the mitochondrial Ca2+ is context-dependent and not just passively due to the increment in the cytosolic Ca2+. Our work also indicates that mitochondrial Ca2+-level correlates positively with a series of essential factors, such as mitochondrial membrane potential, mitochondrial ATP production and negatively correlates with certain factors such as mitochondrial temperature. We propose that TRPV4-mediated mitochondrial Ca2+-signalling and other metabolisms has implications in the immune activation process including immune synapse formation. Our data also endorse the re-evaluation of Ca2+-signalling in T cell, especially in the light of mitochondrial Ca2+-buffering and in higher body temperature, such as in case of fever. Presence of TRPV4 in the mitochondria of T cell is relevant for proper and optimum immune response and may provide evolutionary adaptive benefit. These findings may also have broad implications in different pathophysiological process, neuro-immune cross-talks, and channelopathies involving TRPV4.


Assuntos
Linfócitos T , Canais de Cátion TRPV , Animais , Camundongos , Canais de Cátion TRPV/metabolismo , Linfócitos T/metabolismo , Mitocôndrias/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais , Cálcio/metabolismo
19.
J Am Chem Soc ; 145(5): 2951-2957, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705574

RESUMO

Macrophages are the most plastic immune cells by changing their characters in response to environmental stimuli. Broadly, macrophages are categorized into two different subsets based on M1/M2 paradigm, which exhibit completely contrary phenotypes. Whereas M1 macrophages are aggressive to offend invaders such as bacteria and tumors, M2 are anti-inflammatory cells and seemingly help tumor immunity. Tumor-associated macrophages are typical examples of M2 cells as the key components of forming and maintaining the tumor microenvironment. Despite the intensive interest, monitoring M2 macrophages in real time is hampered by the lack of competent detection tools. Here, we report the first M2 selective probe CDg18 with a novel mechanism of gating-oriented live-cell distinction through M2-favored fatty acid transporters. To demonstrate the potential of CDg18, we visualize the progressive phenotypic change of M2 toward M1 using a resveratrol analogue HS-1793 as a reprogramming effector. Combined together with M1 probe CDr17, the diminishing M2 character and emerging M1 markers could be simultaneously monitored in real time through the multicolor changes during macrophage reprogramming.


Assuntos
Corantes Fluorescentes , Macrófagos , Fenótipo
20.
Angew Chem Int Ed Engl ; 62(2): e202214326, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36382990

RESUMO

Here we report synthetic monosaccharide channels built with shape-persistent organic cages, porphyrin boxes (PBs), that allow facile transmembrane transport of glucose and fructose through their windows. PBs show a much higher transport rate for glucose and fructose over disaccharides such as sucrose, as evidenced by intravesicular enzyme assays and molecular dynamics simulations. The transport rate can be modulated by changing the length of the alkyl chains decorating the cage windows. Insertion of a linear pillar ligand into the cavity of PBs blocks the monosaccharide transport. In vitro cell experiment shows that PBs transport glucose across the living-cell membrane and enhance cell viability when the natural glucose transporter GLUT1 is blocked. Time-dependent live-cell imaging and MTT assays confirm the cyto-compatibility of PBs. The monosaccharide-selective transport ability of PBs is reminiscent of natural glucose transporters (GLUTs), which are crucial for numerous biological functions.


Assuntos
Frutose , Glucose , Glucose/metabolismo , Monossacarídeos , Proteínas de Transporte de Monossacarídeos/metabolismo , Transporte Biológico , Proteínas Facilitadoras de Transporte de Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...